Navigation überspringen
WFG Wiki / Digitalisierung und KI

Künstliche Intelligenz und maschinelles Lernen

Das Fraunhofer-Institut für Kognitive Systeme IKS sagt dazu: 

Künstliche Intelligenz (KI) ist ein Teilgebiet der Informatik. Sie imitiert menschliche kognitive Fähigkeiten, indem sie Informationen aus Eingabedaten erkennt und sortiert. Diese Intelligenz kann auf programmierten Abläufen basieren oder durch maschinelles Lernen erzeugt werden.

In den vergangenen Jahren wurden vor allem im Bereich des maschinellen Lernens große Fortschritte gemacht. Das liegt vor allem an der zunehmenden Verfügbarkeit von großen Datenmengen und hoher Rechenleistung, die eine Grundvoraussetzung für die komplexen Berechnungen von Machine Learning sind.

Bei maschinellen Lernverfahren erlernt ein Algorithmus durch Wiederholung selbstständig eine Aufgabe zu erfüllen. Die Maschine orientiert sich dabei an einem vorgegebenen Gütekriterium und dem Informationsgehalt der Daten. Anders als bei herkömmlichen Algorithmen wird kein Lösungsweg modelliert. Der Computer lernt selbstständig die Struktur der Daten zu erkennen. Beispielsweise können Roboter selbst erlernen, wie sie bestimmte Objekte greifen müssen, um sie von A nach zu B transportieren. Sie bekommen nur gesagt, von wo und nach wo sie die Objekte transportieren sollen. Wie genau der Roboter greift, erlernt er durch das wiederholte Ausprobieren und durch Feedback aus erfolgreichen Versuchen.

KI Training findet in sehr unterschiedlichen Gebieten Anwendung:

  • Bilderkennung: Mit Machine-Vision-Algorithmen können Bilder erkannt und kategorisiert werden. So können sehr viele Daten blitzschnell verarbeitet werden. Maschinelles Sehen kommt unter anderem in der medizinischen Diagnostik oder bei der Gesichtserkennung zum Einsatz, kann aber auch für die Übersetzung von handschriftlichen Zeichen in Druckschrift genutzt werden. Auch für das autonome Fahren ist die Bilderkennung entscheidend.
  • Spracherkennung: Das Erkennen und Interpretieren von verbaler Sprache kann ebenfalls über maschinelle Lernverfahren erlernt werden. Diese Algorithmen kommen beispielsweise in Sprachassistenzsystemen zum Einsatz.
  • Semantische Spracherkennung: Geschriebener Text kann über maschinelles Lernen semantisch interpretiert werden. Das erlaubt kontextbezogene Übersetzungsanwendungen oder Chatbots, die selbstständig sinnvolle Lösungen generieren.
  • Mustererkennung: Maschinelle Lernverfahren können außerdem dazu eingesetzt werden Muster in Ereignisfolgen zu erkennen, die für den Menschen durch die großen Mengen an Datenpunkten, Variablen und Abhängigkeiten nicht erkennbar sind. Beispielsweise kann eine KI Fehlermuster der Fahrzeugelektronik aus Daten erlernen und diese Anomalien mit dem Verhalten im Betrieb abgleichen. Anomalien werden dadurch schneller erkannt, wodurch früh entgegengewirkt werden kann. Beispielsweise durch den Austausch eines Bauteils, noch bevor es einen Fehler tatsächlich verursacht.
  • Prozessoptimierung: Die erkannten Muster können auch als Informationsbasis für Optimierungsprozesse genutzt werden. In diesem werden maschinelle Lernverfahren sind maschinell erzeugte Prozessmodelle, die eine optimierte Prozesssteuerung ermöglichen.

Auch in der Digitalisierung der Industrie, der sogenannten Industrie 4.0, erlaubt maschinelle Intelligenz eine optimierte Planung und bessere Voraussagen. Automatisierte und vernetzte Maschinen erkennen ihre Umgebung und können selbstständig ihre Handlungen daran anpassen. Auch die Mensch-Roboter-Kollaboration ohne Schutzzaun wird erst durch maschinelles Lernen und Künstliche Intelligenz möglich. Auch hier muss die künstliche Intelligenz an Robotern abgesichert werden, um Menschenleben nicht zu gefährden.

Im Gemeinschaftsprojekt »REMORA – Multi-Stage Automated Continuous Delivery for AI-based Software & Services Development in Industry 4.0« arbeitet das Fraunhofer IKS mit weiteren Partnern beispielsweise an der einfachen Integration von KI-Services in die Industrie 4.0. Ziel ist es, die Integration von KI für die Echtzeit-Maschinendaten-Analyse zu vereinfachen und Werkzeuge für qualitativ hochwertige und dynamische Maschinendaten zu erstellen. Erfahren Sie mehr auf unserer Projektseite.

Ihre Ansprechpartnerin

Katharina Schlag

Telefon: 02602 124-405
Mail: katharina.schlag@westerwaldkreis.de

Vielleicht auch interessant?

Ab Mitte 2025 Pflicht zur Barrierefreiheit

Ab Mitte 2025 gilt für Websites und Apps eine gesetzliche Pflicht zur Barrierefreiheit. Diese regelt das Barrierefreiheitsstärkungsgesetz (BFSG). Das Barrierefreiheitsstärkungsgesetz (BFSG) setzt die EU-Richtlinie des European Accessibility Act (EAA) um, sodass europaweit einheitliche Regeln zur Barrierefreiheit gelten.

Die elektronische Rechnung wird 2025 Pflicht!

Unternehmen, die mit der öffentlichen Verwaltung zusammenarbeiten, sind mit der elektronischen Rechnung schon länger vertraut. Denn im B2G-Bereich gilt bereits seit 2020 eine E-Rechnungspflicht. Jetzt soll die Pflicht auch für B2B-Rechnungen kommen.

Mittelstand-Digital Zentren (MDZ)

Die Zentren im Netzwerk Mittelstand-Digital unterstützen vor Ort